龔 剣萍

ぐん ちぇんぴん
Jian Ping Gong
計画 A03
A03-03 研究代表者



研究分担者: 黒川孝幸(北海道大学大学院先端生命科学研究院、教授)
研究分担者: 野々山貴行(北海道大学大学院先端生命科学研究院、特任准教授)


高分子ハイドロゲルは、三次元網目構造に多量の水を保持し、物質透過性、刺激応答性、生体親和性、低摩擦性等ユニークな機能を有する優れた物質であり、生体材料や機能材料として高く期待されている。しかしながら、従来のゲルは秩序構造を持たず、その機能が限られている。本研究では、ソフトクリスタルの概念を含水ゲルに応用し、ゲルに周期構造や秩序構造を導入することで、その高機能化を図る。具体的には、せん断応力場を用いる分子配向法、生物の周期構造を写し取るバイオテンプレート法等の種々の手法を用いて数十から百ナノメートルスケールの超構造をハイドロゲル等のソフトマテリアルに導入し、高靭性と刺激応答性を付与する。指圧程度の低力学刺激及び僅かな環境刺激(温度、pH、溶媒との親和性等)に応答して構造色が多彩に変化するソフト&アクティブな高靱性フォトニックマテリアルの創製、次世代可視化センサー、新機構ディスプレイ及び一次元異方拡散によるzero-order長時間徐放DDS キャリア等への応用を目的とする。



  • Decoupling Dual-Stimuli Responses in Patterned Lamellar Hydrogels as Photonic Sensors,
    Y. Yue, X. Li, T. Kurokawa, M. A. Haque, J. P. Gong., J. Mater. Chem. B, 4, 4104–4109 (2016).
  • Polymer Adsorbed Bilayer Membranes Form Self-Healing Hydrogels with Tunable Superstructure, X. F. Li, T. Kurokawa, R. Takahashi, M. A. Haque, Y. F. Yue, T. Nakajima, J. P. Gong. Macromolecules, 48, 2277–2282 (2015).
  • Quasi-unidirectional shrinkage of gels with well-oriented lipid bilayers upon uniaxial stretching, T. Nakajima, C. Durand, X. F. Li, M. A. Haque, T. Kurokawa, J. P. Gong. Soft Matter, 11, 237–240 (2015).
  • Mechano-actuated ultrafast full-colour switching in layered photonic hydrogels, Y. F. Yue, T. Kurokawa, M. A. Haque, T. Nakajima, T. Nonoyama, X. F. Li, I. Kajiwara, J. P. Gong. Nature Commun., 5, 1–8 (2014).
  • Lamellar Hydrogels with High Toughness and Ternary Tunable Photonic Stop-Band, Y. F. Yue, M. A. Haque, T. Kurokawa, T. Nakajima, J. P. Gong, Adv. Mater., 25, 3106–3110 (2013).




  1. "Preparation of Tough Double- and Triple-Network Supermacroporous Hydrogels through Repeated Cryogelation" S. Sedlačík, T. Nonoyama, H. Guo, R. Kiyama, T. Nakajima, Y. Takeda, T. Kurokawa and J. P. Gong, Chemistry of Materials, 2020, 32(19), 8576-8586
  2. "Hydrogels as Dynamic Memory with Forgetting Ability" C. Yu, H. Guo, K. Cui, X. Li, Y. N. Ye, T. Kurokawa and J. P. Gong, Proceedings of the National Academy of Sciences, 2020, 117(32), 18962-18968
  3. "Fiber-reinforced Viscoelastomers Show Extraordinary Crack Resistance that Exceeds Metals" W. Cui, D. R. King, Y. Huang, L. Chen, T. L. Sun, Y. Guo, Y. Saruwatari, C.-Y. Hui, T. Kurokawa and J. P. Gong, Advanced Materials, 2020, 32(31), 1907180
  4. "Lamellar Bilayer to Fibril Structure Transformation of Tough Photonic Hydrogel under Elongation" M. A. Haque, K. Cui, M. Ilyas, T. Kurokawa, A. Marcellan, A. Brulet, R. Takahashi, T. Nakajima and J. P. Gong Macromolecules, 2020, 53, 4711-4721.
  5. "Hydrogels Toughened by Biominerals as Energy-Dissipative Sacrificial Bonds" K. Fukao, K. Tanaka, R. Kiyama, T. Nonoyama and J. P. Gong, Journal of Materials Chemistry B, 2020, 8, 5184-5188.
  6. "Fabrication of Bioinspired Hydrogels: Challenges and Opportunities" H. Fan and J. P. Gong, Macromolecules, 2020, 53(8), 2769-2782.
  7. "Non-Linear Rheological Study of Hydrogel Sliding Friction in Water and Concentrated Hyaluronan Solution" S. Hirayama, T. Kurokawa and J. P. Gong, Tribology International, 2020, 147, 106270.
  8. "Instant Thermal Switching from Soft Hydrogel to Rigid Plastics Inspired by Thermophile Proteins" T. Nonoyama, Y. W. Lee, K. Ota, K. Fujioka, W. Hong and J. P. Gong, Advanced Materials, 2020, 32(4), 1905878.
  9. "Internal Damage Evolution in Double-Network Hydrogels Studied by Microelectrode Technique" H. Guo, W. Hong, T. Kurokawa, T. Matsuda, Z. L. Wu, T. Nakajima, M. Takahata, T. Sun, P. Rao and J. P. Gong, Macromolecules, 2019, 52, 18, 7114-7122.
  10. "Polyelectrolyte Complexation via Viscoelastic Phase Separation Results in Tough and Self-Recovering Porous Hydrogel" K. Murakawa, D. R. King, T. L. Sun, H. Guo, T. Kurokawa and J. P. Gong, Journal of Materials Chemistry B, 2019, 7(35), 5296-5305.
  11. "Facile Synthesis of Novel Elastomers with Tunable Dynamics for Toughness, Self-healing and Adhesion" L. Chen, T. L. Sun, K. Cui, D. R. King, T. Kurokawa, Y. Saruwatari and J. P. Gong, Journal of Materials Chemistry A, 2019, 7(29),17334-17344.
  12. "Hydrophobic Hydrogels with Fruit-like Structure and Functions" H. Guo, T. Nakajima, D. Hourdet, A. Marcellan, C. Creton, W. Hong, T. Kurokawa and J. P. Gong, Advanced Materials, 2019, 31(25), 1900702.
  13. "Superior Fracture Resistance of Fiber Reinforced Polyampholyte Hydrogels Achieved by Extraordinarily Large Energy-dissipative Process Zones" Y. Huang, D. R. King, W. Cui, T. L. Sun, H. Guo, T. Kurokawa, H. R. Brown, C.-Y. Hui and J. P. Gong, Journal of Materials Chemistry A, 2019, 7, 13431-13440.
  14. "Designing Responsive Photonic Crystal Patterns by Using Laser Engraving" Y. Yue, T. Kurokawa, ACS Applied Materials & Interfaces, 2019, 11(11), 10841-10847.
  15. "Shearing-induced contact pattern formation in hydrogels sliding in polymer solution" S. Yashma, S. Hirayama, T. Kurokawa, T. Salez, H. Takefuji, W. Hong, J. P. Gong, Soft Matter, 2019, 9, 1953-1959.
  16. "Water-Triggered Ductile−Brittle Transition of Anisotropic Lamellar Hydrogels and Effect of Confinement on Polymer Dynamics" M. Ilyas, M. Haque, Y. Yue, T. Kurokawa, T. Nakajima, T. Nonoyama, J. Gong, Macromolecules, 2017, 50 (20), 8169−8177.
  17. "Tough and Variable-Band-Gap Photonic Hydrogel Displaying Programmable Angle-Dependent Colors" M. Haque, K. Mito, T. Kurokawa, T. Nakajima, T. Nonoyama, M. Ilyas, J. Gong, ACS Omega, 2018, 3 (1), 55−62.


  • "Hydrogels with Multi-Cylindrical Lamellar Bilayers: Swelling-Induced Contraction and Anisotropic Molecular Diffusion" T. Nakajima, K. Mito, A. M. Haque, T. Kurokawa, J. P. Gong, The 2nd International Symposium for Advanced Gel Materials & Soft Matters (ISAGMSM) (Guiyang, China, Aug. 20-22, 2017)


  1. 受賞タイトル:強靭ゲルの創成とその強靭化原理の解明に関する研究 文部科学省 科学技術分野の文部科学大臣表彰 科学技術賞 受賞者:龔 剣萍
  2. 受賞タイトル:高靱性ゲル・バイオセラミックスの複合と骨形成誘導に関する研究 高分子学会 高分子研究奨励賞 受賞者:野々山 貴行
  3. 受賞タイトル:高温で瞬時に1000倍以上硬くなる温度応答性アクティブソフトマテリアル 第67回高分子討論会 パブリシティ賞 受賞者:野々山 貴行

gong [at] sci.hokudai.ac.jp